Valuation of American Continuous-Installment Options Under the Constant Elasticity of Variance Model

Guohe DENG, Guangming XUE

Journal of Systems Science and Information ›› 2016, Vol. 4 ›› Issue (2) : 149-168.

PDF(266 KB)
PDF(266 KB)
Journal of Systems Science and Information ›› 2016, Vol. 4 ›› Issue (2) : 149-168. DOI: 10.21078/JSSI-2016-149-20
Article

Valuation of American Continuous-Installment Options Under the Constant Elasticity of Variance Model

  • Guohe DENG, Guangming XUE
Author information +
History +

Abstract

This article prices American-style continuous-installment options in the constant elasticity of variance (CEV) diffusion model where the volatility is a function of the stock price. We derive the semi-closed form formulas for the American continuous-installment options using Kim's integral representation method and then obtain the closed-form solutions by approximating the optimal exercise and stopping boundaries as step functions. We demonstrate the speed-accuracy of our approach for different parameters of the CEV model. Furthermore, the effects on both option price and the optimal boundaries are discussed and the causes of underestimating or overestimating the option prices are analyzed under the classical Black-Scholes-Merton model, in particular, for the case of elasticity coefficient with numerical examples.

Key words

American continuous-installment option / CEV model / numerical integration method

Cite this article

Download Citations
Guohe DENG, Guangming XUE. Valuation of American Continuous-Installment Options Under the Constant Elasticity of Variance Model. Journal of Systems Science and Information, 2016, 4(2): 149-168 https://doi.org/10.21078/JSSI-2016-149-20

References

[1] Davis M, Schachermayer W, Tompkins R. Pricing, no-arbitrage bounds and robust hedging of installment options. Social Science Electronic Publishing, 2001, 1(6):597-610.
[2] Davis M, Schachermayer W, Tompkins R. Installment options and static hedging. Journal of Risk Finance, 2002, 3(2):46-52.
[3] Ben-Ameur H, Breton M, François P. A dynamic programming approach to price installment options. European Journal of Operational Research, 2006, 169(2):667-676.
[4] Griebsch S, Kühn C, Wystup U. Instalment Options:A closed-form solution and the limiting case. Mathematical Control Theory and Finance, Springer, Heidelberg, 211-229, 2008.
[5] Alobaidi G R, Mallier R, Deakin S. Laplace transforms and installment options. Mathematical Models and Methods in Applied Sciences, 2004, 14(6):1167-1189.
[6] Ciurlia P, Roko I. Valuation of American continuous-installment options. Computational Economics, 2005, 25(1-2):143-165.
[7] Alobaidi G R, Mallier R. Installment options close to expiry. Journal of Applied Mathematics and Stochastic Analysis, 2006, 2006(1):1-9.
[8] Kimura T. American continuous-installment options:valuation and premium decomposition. SIAM Journal on Applied Mathematics, 2007, 71(2):517-539.
[9] Kimura T. Valuing continuous-installment options. European Journal of Operational Research, 2010, 201(1):222-230.
[10] Ciurlia P, Caperdoni C. A note on the pricing of perpetual continuous-installment options. Mathematical Methods in Economics and Finance, 2009, 4(1):11-26.
[11] Ciurlia P. Valuation of European continuous-installment options. Computers & Mathematics with Applications, 2011, 62(6):2518-2534.
[12] Ciurlia P. An integral representation approach for valuing American-style installment options with continuous payment plan. Nonlinear Analysis:Theory & Methods and Applications, 2011, 74(16):5506-5524.
[13] Ciurlia P. On a general class of free boundary problems for European-style installment options with continuous payment plan. Communications on Pure & Applied Analysis, 2011, 10(4):1205-1224.
[14] Mezentsev A, Pomelnikov A, Ehrhardt M. Efficient numerical valuation of continuous installment options. Advances in Applied Mathematics & Mechanics, 2011, 3(2):141-164.
[15] Huang G A, Deng G, Huang L H. Valuation for an American continuous-installment put option on bond under Vasicek interest rate model. Journal of Applied Mathematics and Decision Sciences, 2009, 2009(1):1-11.
[16] Deng G. American continuous-installment options of barrier type. Journal of Systems Science and Complexity, 2014, 27(4):928-949.
[17] Yi F H, Yang Z, Wang X H. A variational inequality arising from European installment call options pricing. SIAM Journal on Mathematical Analysis, 2008, 40(1):306-326.
[18] Yang Z, Yi F H. A variational inequality arising from American installment call options pricing. Journal of Mathematical Analysis & Applications, 2009, 357(1):54-68.
[19] Black F, Scholes M. The pricing of options and corporate liabilities. Journal of Political Economy, 1973, 81(5-6):637-654.
[20] Merton R C. Theory of rational option pricing. The Bell Journal of Econoalca, 1973, 4(1):141-183.
[21] Cox J. Notes on option pricing I:constant elasticity of variance diffusions. Working Paper, Stanford University, 1975(reprinted in J. Portf. Manage., 1996, 22:15-17).
[22] Cox J, Ross S A. The valuation of options for alternative stochastic processes. J. of Financial Economics, 1976, 3(1):145-166.
[23] Boyle P P, Tian Y S. Pricing lookback and barrier options under the CEV process. Journal of Financial and Quantitative Analysis, 1999, 34(2):241-264.
[24] Davydov D, Linetsky V. Pricing and hedging path-dependent options under the CEV process. Management Science, 2001, 47(7):949-965.
[25] Emanuel D, MacBeth J. Further results on the constant elasticity of variance call option pricing model. Journal of Financial & Quantitative Analysis, 1982, 17(4):533-554.
[26] Hsu Y L, Lin T I, Lee C F. Constant elasticity of variance (CEV) option pricing model:Integration and detailed derivation. Mathematics & Computers in Simulation, 2008, 79(1):60-71.
[27] Larguinho M, Dias J C, Braumann C A. On the computation of option prices and greeks under CEV model. Quantitative Finance, 2013, 13(6):907-917.
[28] Detemple J, Tian W. The valuation of American options for a class of diffusion processes. Management Science, 2002, 48(7):917-937.
[29] Nunes J P V. Pricing American options under the constant elasticity of variance model and subject to bankruptcy. Journal of Financial & Quantitative Analysis, 2009, 44(5):1231-1263.
[30] Wong H Y, Zhao J. Valuing American options under the CEV model by Laplace-Carson transforms. Opeartions Research Letters, 2010, 38(5):474-481.
[31] Ruas J P, Dias J C, Nunes J P. Pricing and static hedging of American options under the jump to default extended CEV model. Journal of Banking and Finance, 2013, 37(11):4059-4072.
[32] Deng G. Pricing American continuous-installment options under stochastic volatility model. Journal of Mathematical Analysis and Applications, 2015, 424(2):802-823.
[33] Kim I J. The analytical valuation of American options. Review of Financial Studies, 1990, 3(4):547-572.
[34] Kallast S, Kivinukk A. Pricing and hedging american options using approximations by Kim integral equations. European Finance Review, 2003, 7(3):361-383.
[35] Sankaran M. Approximations to the non-central Chi-square distribution. Biometrica, 1963, 50(1-2):199-204.

Funding

Supported by the National Natural Science Foundation of China (11461008), the Humanities and Social Science Research Foundation of the Ministry of Education of China (13YJA910003), Guangxi Natural Science Foundation (2013GXNSFAA019005), and the Key Research Foundation of Science and Technology of the Education Department of Guangxi Province (2013ZD010)

PDF(266 KB)

125

Accesses

0

Citation

Detail

Sections
Recommended

/