
Parameter Estimation of a Mixed Production Function Model Based on Improved Firefly Algorithm and Model Application
Maolin CHENG, Yun HAN
Journal of Systems Science and Information ›› 2018, Vol. 6 ›› Issue (4) : 336-348.
Parameter Estimation of a Mixed Production Function Model Based on Improved Firefly Algorithm and Model Application
In the analysis on economic growth factors, researchers usually use the production function model to calculate and measure influencing factors' contribution rates to economic growth. Common production functions include the CD (Cobb-Douglas) production function, the CES (Constant Elasticity of Substitution) production function, the VES (Variable Elasticity of Substitution) production function, and so on. In consideration of the diversity and complementarity of models, the paper combines the CD production function with the CES production function and then proposes a mixed production function. With regard to the parameter estimation of model, the paper gives an improved firefly algorithm with the high precision and a fast rate of convergence. With regard to the calculation of factors' contribution rates, traditional methods generally have big errors and are not applicable to complicated models, so the paper offers a new method which can calculate contribution rates scientifically. Finally, the paper calculates the contribution rates of factors affecting Chinese economic growth and gets a good result.
mixed production function / economic growth / contribution rate / firefly algorithm {{custom_keyword}} /
Table 1 Information of Chinese economic growth |
Year | Y | K | L | E | C | I |
1994 | 48197.9 | 17042.1 | 67455.0 | 122737 | 18622.9 | 20381.9 |
1995 | 60793.7 | 20019.3 | 68065.0 | 131176 | 23613.8 | 23499.9 |
1996 | 71176.6 | 22913.5 | 68950.0 | 138948 | 28360.2 | 24133.8 |
1997 | 78973.0 | 24941.1 | 69820.0 | 137798 | 31252.9 | 26849.7 |
1998 | 84402.3 | 28406.2 | 70637.0 | 132214 | 33378.1 | 26967.2 |
1999 | 89677.1 | 29854.7 | 71394.0 | 133831 | 35647.9 | 29896.2 |
2000 | 99214.6 | 32917.7 | 72085.0 | 138553 | 39105.7 | 39273.2 |
2001 | 109655.2 | 37213.5 | 72797.0 | 143199 | 43055.4 | 42183.6 |
2002 | 120332.7 | 43499.9 | 73280.0 | 151797 | 48135.9 | 51378.2 |
2003 | 135822.8 | 55566.6 | 73736.0 | 174990 | 52516.3 | 70483.5 |
2004 | 159878.3 | 70477.4 | 74264.0 | 203227 | 59501.0 | 95539.1 |
2005 | 184937.4 | 88773.6 | 74647.0 | 224682 | 68352.6 | 116921.8 |
2006 | 216314.4 | 109998.2 | 74978.0 | 246270 | 79145.2 | 140974.0 |
2007 | 265810.3 | 137323.9 | 75321.0 | 265480 | 93571.6 | 150648.1 |
2008 | 314045.4 | 172828.4 | 75564.0 | 291448 | 114830.1 | 166863.7 |
2009 | 340902.8 | 224598.8 | 75828.0 | 306647 | 132678.4 | 179921.5 |
2010 | 401512.8 | 251683.8 | 76105.0 | 324939 | 156998.4 | 201722.2 |
2011 | 473104.0 | 311485.1 | 76420.0 | 348002 | 183918.6 | 236402.0 |
2012 | 519470.1 | 374694.7 | 76704.0 | 361732 | 210307.0 | 244160.2 |
2013 | 568845.0 | 447074.0 | 76977.0 | 375252 | 237810.0 | 258267.0 |
2014 | 636462.7 | 512760.7 | 77253.0 | 426000 | 241541.0 | 264334.5 |
2015 | 676780.0 | 562000.0 | 77451.0 | 430000 | 265980.1 | 245502.9 |
2016 | 744127.0 | 606466.0 | 77603.0 | 436000 | 286726.5 | 243386.0 |
Table 2 Comparison of results from different algorithms |
Method | Conventional algorithm | Improved algorithm |
A | 1.2640 | 1.3758 |
λ | 0.0275 | 0.0422 |
δ1 | 0.1686 | 0.1310 |
δ2 | 0.3206 | 0.1761 |
δ3 | 0.0408 | 0.0352 |
α | 0.5314 | 0.2220 |
β | 0.2199 | 0.1840 |
ρ | 0.2063 | 0.3186 |
μ | 0.8053 | 0.7650 |
Number of Iterations | 243 | 58 |
Objective Function g | 1.1602 × 109 | 8.8554 × 108 |
Model's Coefficient of Determination R2 | 0.9989 | 0.9992 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |