
Analyst Coverage, Forecasting Bias, and Corporate Innovation: Evidence from China
Xinping MA, Yiru WANG, Jianping LI, Biao SHI
Journal of Systems Science and Information ›› 2024, Vol. 12 ›› Issue (1) : 1-24.
Analyst Coverage, Forecasting Bias, and Corporate Innovation: Evidence from China
Due to information asymmetry and strategic innovation, firms often encounter challenges related to insufficient driving forces and low-quality innovation outcomes. Analysts always act as information intermediaries who help foster the advancement of corporate innovation activities and the conversion of innovation output. This study examines the impact of analyst coverage and forecasting bias on corporate innovation, employing data from China A-shared listed firms spanning the period 2007 to 2019. We measure corporate innovation from two perspectives: Input and output. Specifically, we use the ratio of research and development (R&D) expenditure to sales as a proxy for the innovation input and the number of patent citations excluding self-citations to measure innovation output. We find that analyst coverage promotes corporate innovation, which is consistent with the "bright" side of analyst coverage. However, the positive effect of analyst coverage hinges on effectively transmitting and disclosing accurate information to investors in the capital market. Based on this, analysts' forecasting bias includes forecasting dispersion and optimism bias. We find evidence that an increase in analysts' forecast dispersion leads to a decrease in corporate innovation quality. Moreover, this paper presents a novel approach by employing the regression discontinuity method to examine the effect of analyst optimistic bias on firm innovation. The empirical findings reveal that overly optimistic forecasts by analysts exacerbate innovation quality. These analyses enrich the research on analyst coverage and corporate innovation, providing an empirical basis for improving the capital market with the help of analysts.
analyst coverage / forecasting bias / corporate innovation / innovation quality {{custom_keyword}} /
Table 1 Variable definitions |
Variables | Definitions |
RD_Sales | R&D expenditures scaled by Sales |
cites | The number of patent citations per year of a firm |
Cites | Natural logarithm of one plus the number of patent citations per year of a firm |
Analysts | The number of analyst coverage per year of a firm |
Lncoverage | Natural logarithm of one plus the number of analysts per year of a firm |
Dispresion | the standard deviation of the forecast earning of firm |
EPSP | The mean value of forecast earning of firm |
Size | Natural logarithm of the total assets |
ROA | Return on asset |
Leverage | Total debt-to-total assets |
TobinQ | Market-to-book ratio |
Age | Number of years a firm has existed |
Capex_AT | Capital expenditures scaled by total assets |
Fix_AT | Fixed assets scaled by total assets |
Sale_Growth | The growth rate of operating income |
HHI | Industry Herfindahl index |
HHI2 | The square of industry Herfindahl index |
Note: This table describes definitions for all the variables constructed based on the sample of China public firms from 2007 to 2019. |
Table 2 Summary statistics and correlation matrix |
Panel A Descriptive statistics | |||||||
(1) | (2) | (3) | (4) | (5) | |||
VARIABLES | Mean | SD | Min | Max | |||
RD_Sales | 18,059 | 0.0455 | 0.0452 | 0.0002 | 0.2570 | ||
cites | 12,791 | 47.06 | 408.1 | 0 | 18,818 | ||
Cites | 12,791 | 2.1320 | 1.5300 | 0.0000 | 6.3440 | ||
Analysts | 18,059 | 22.81 | 19.75 | 1 | 127 | ||
Lncoverage | 18,059 | 2.7770 | 0.9620 | 0.6930 | 4.4190 | ||
Dispresion | 17,027 | 0.0248 | 0.0321 | 0.0000 | 1.0460 | ||
EPSP | 17,994 | 0.4026 | 0.4856 | −0.4022 | 2.6029 | ||
Size | 18,059 | 22.110 | 1.2680 | 19.680 | 26.020 | ||
ROA | 18,059 | 0.0474 | 0.0626 | −0.2280 | 0.2170 | ||
Leverage | 18,059 | 0.3980 | 0.1990 | 0.0502 | 0.8980 | ||
TobinQ | 18,059 | 2.9420 | 2.1060 | 0.9040 | 12.780 | ||
Age | 18,059 | 15.490 | 5.7790 | 3.0000 | 30.000 | ||
Capex_AT | 18,059 | 0.0543 | 0.0480 | 0.0002 | 0.2380 | ||
Fix_AT | 18,059 | 0.2080 | 0.1460 | 0.0021 | 0.7160 | ||
Sale_Growth | 18,059 | 0.2710 | 0.5030 | −0.7330 | 1.8940 | ||
HHI | 18,059 | 0.1210 | 0.1240 | 0.0195 | 0.7770 | ||
HHI2 | 18,059 | 0.0300 | 0.0788 | 0.0004 | 0.6030 | ||
Panel B Correlation matrix | |||||||
RD_Sales | Cites | Lncoverage | Size | Leverage | ROA | TobinQ | |
RD_Sales | 1 | ||||||
Cites | 0.067*** | 1 | |||||
Lncoverage | 0.061*** | 0.195*** | 1 | ||||
Size | −0.284*** | 0.322*** | 0.331*** | 1 | |||
ROA | 0.003 | 0.020** | 0.290*** | −0.088*** | −0.395*** | 1 | |
TobinQ | 0.314*** | −0.023** | 0.033*** | −0.425*** | −0.384*** | 0.301*** | 1 |
Note: Panel A reports the descriptive statistics, such as the mean, standard deviation, and the number of observations of the variables used in our regressions. Panel B presents the correlation matrix of the key variables. The data correspond to an unbalanced panel of China public firms from 2007 to 2019. The number of observations is at the firm-year level. All variables are defined in |
Table 3 Baseline regression of corporate innovation on analyst coverage |
(1) | (2) | (3) | (4) | |
VARIABLES | RD_Sales | RD_Sales | Cites | Cites |
Lncoverage | 0.0049*** | 0.0045*** | 0.0816*** | 0.0945*** |
(8.5056) | (7.3386) | (3.6039) | (3.9480) | |
RD_Sales | 5.5835*** | 5.5070*** | ||
(8.8885) | (8.4697) | |||
Size | −0.0014** | −0.0012* | 0.5810*** | 0.5938*** |
(−2.1736) | (−1.7230) | (21.0464) | (21.1577) | |
Leverage | −0.0440*** | −0.0373*** | 0.3278** | 0.3566*** |
(−10.9275) | (−9.0189) | (2.5484) | (2.5947) | |
ROA | −0.0903*** | −0.0755*** | 0.9067** | 0.8818** |
(−7.9307) | (−5.4087) | (2.4522) | (2.2709) | |
TobinQ | 0.0031*** | 0.0034*** | −0.0162 | 0.0058 |
(7.7385) | (8.1092) | (−1.5812) | (0.5635) | |
Capex_AT | 0.0427*** | 0.0343*** | −0.1120 | −0.2551 |
(4.2532) | (3.4177) | (−0.3175) | (−0.7013) | |
Age | −0.0004*** | −0.0003*** | 0.0101** | 0.0076* |
(−3.2948) | (−2.7074) | (2.4300) | (1.7574) | |
Sale_Growth | 0.0040*** | 0.0047*** | −0.0057 | −0.0151 |
(3.7052) | (4.1631) | (−0.1701) | (−0.4276) | |
Fix_AT | −0.0169*** | −0.0177*** | −0.2197 | −0.3178* |
(−4.1468) | (−4.3382) | (−1.3301) | (−1.8350) | |
HHI | 0.0017 | 0.0055 | 2.1026*** | 3.0253*** |
(0.1115) | (0.3485) | (2.9918) | (3.8136) | |
HHI | −0.0229 | −0.0257 | −2.4309*** | −3.6722*** |
(−1.0828) | (−1.1231) | (−2.7023) | (−3.6263) | |
Constant | 0.0578*** | 0.0483*** | −13.3405*** | −13.5128*** |
(3.5449) | (2.8356) | (−21.1810) | (−21.2092) | |
Ind FE | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
Observations | 16,362 | 14,507 | 11,254 | 9,549 |
Adj_ | 0.4344 | 0.4254 | 0.5329 | 0.5514 |
Note: This table reports regressions of corporate innovation variables (one-year-ahead, two-year-ahead, R&D expenditure scaled by sales and patent citations) on analyst coverage and other control variables. RD Sales is the R&D expenditures scaled by sales. Cites is the natural logarithm of one plus the number of patent citations. All variables are defined in |
Table 4 Robustness test |
Panel A the instrumental variable approach | ||||||
First | Second | |||||
(1) | (2) | (3) | (4) | (5) | ||
VARIABLES | Lncoverage | RD_Sales | RD_Sales | Cites | Cites | |
Expcoverage | 0.0237*** | |||||
(8.68) | ||||||
Lncoverage | 0.0127** | 0.0123* | 0.4849* | 0.4337 | ||
(2.3972) | (1.7127) | (1.6463) | (1.4523) | |||
RD_Sales | 6.3348*** | 7.5887*** | ||||
(4.2561) | (5.0682) | |||||
Constant | −2.0512*** | 0.1022*** | 0.0939*** | −13.4795*** | −13.8003*** | |
(−4.86) | (3.6096) | (2.7227) | (−8.7949) | (−8.8227) | ||
Controls | YES | YES | YES | YES | YES | |
Ind FE | YES | YES | YES | YES | YES | |
Year FE | YES | YES | YES | YES | YES | |
CD Wald | 285.553 | 238.376 | 222.177 | 208.116 | ||
Observations | 4,338 | 4,338 | 3,307 | 3,157 | 2,780 | |
Adj_ | 0.31 | 0.5195 | 0.5004 | 0.5269 | 0.5348 | |
Weak identification test | 75.43 | |||||
Underidentification test | 91.43 | |||||
[0.0000] | ||||||
Panel B Alternative innovation variables | ||||||
(1) | (2) | (3) | (4) | |||
VARIABLES | RD_AT | RD_AT | Grant | Grant | ||
Lncoverage | 0.0029*** | 0.0025*** | 0.1156*** | 0.1367*** | ||
(8.5337) | (5.9967) | (4.5216) | (4.7646) | |||
RD_Sales | 3.9377*** | 4.1560*** | ||||
(6.4325) | (6.4257) | |||||
Constant | 0.0536*** | 0.0356*** | −7.5271*** | −8.0197*** | ||
(5.8477) | (2.7257) | (−9.4054) | (−9.1728) | |||
Controls | YES | YES | YES | YES | ||
Ind FE | YES | YES | YES | YES | ||
Year FE | YES | YES | YES | YES | ||
Observations | 14,110 | 11,277 | 10,480 | 8,414 | ||
Adj_ | 0.2752 | 0.2330 | 0.2380 | 0.2476 | ||
Panel C Firm fixed effects | ||||||
(1) | (2) | (3) | (4) | |||
VARIABLES | RD_Sales | RD_Sales | Cites | Cites | ||
Lncoverage | 0.0011*** | 0.0012*** | 0.0297* | 0.0054 | ||
(2.8678) | (2.6272) | (1.8547) | (0.2970) | |||
RD_Sales | 1.5213*** | 1.8408*** | ||||
(3.8973) | (4.1626) | |||||
Controls | YES | YES | YES | YES | ||
Year FE | YES | YES | YES | YES | ||
Firm FE | YES | YES | YES | YES | ||
Observations | 14,110 | 11,277 | 10,384 | 8,590 | ||
Firms | 2,925 | 2,574 | 2,214 | 2,017 | ||
Adj_ | 0.0482 | 0.0113 | 0.3462 | 0.3651 |
Note: Panel A reports Ⅳ 2SLS regressions of corporate innovation on analyst coverage, with expected analyst coverage (Expcoverage) as the instrumental variable. Expcoverage is the number of analysts in which the brokerage house owned in the benchmark year, expanding the same proportion in the following years and then calculating the expected coverage in each year. All variable definitions are provided in |
Table 5 Forecasting dispersion and corporate innovation |
(1) | (2) | (3) | (4) | |
VARIABLES | RD_Sales | RD_Sales | Cites | Cites |
Dispresion | −0.0055 | −0.0011 | −2.1802*** | −2.5447*** |
(−0.4078) | (−0.0703) | (−3.5704) | (−3.6118) | |
RD_Sales | 6.1644*** | 6.1172*** | ||
(9.4458) | (8.9058) | |||
Constant | 0.0337* | 0.0185 | −14.2670*** | −14.3115*** |
(1.8519) | (0.8487) | (−21.5645) | (−20.7847) | |
Controls | YES | YES | YES | YES |
Ind FE | YES | YES | YES | YES |
Year FE | YES | YES | YES | YES |
Observations | 13,617 | 10,952 | 10,093 | 8,355 |
Adj_ | 0.4327 | 0.4209 | 0.5394 | 0.5589 |
Note: This table reports regressions of corporate innovation variables (one-year-ahead, two-year-ahead, R&D expenditure scaled by sales and patent citation) on analyst dispersion and other control variables. All variables are defined in |
Figure 1 Forecasting optimism bias and innovation qualityNote: This figure plots the patent citations by the end of the fiscal year as a function of EPSP measured by the distance between analysts' consensus forecasts and the actual firms' EPS. For every EPSP bin, the dots represent the natural logarithm of one plus the number of patent citations per year of a firm. The lines are second-order polynomials fitted through the estimated probabilities on each side of the EPSP = 0.7 threshold. |
Table 6 The selection of optimal bandwidth |
Cutoff = 0.7 | Left of cutoff | Right of cutoff |
BW est.(h) | 0.407 | 0.407 |
BW bias.(b) | 0.561 | 0.561 |
Rho(h/b) | 0.725 | 0.725 |
Table 7 Forecasting optimism bias and corporate innovation |
(1) | (2) | (3) | |
VARIABLES | Cites | Cites | Cites |
Optimum | −0.06675 | −0.12914** | −0.10360** |
(−1.03) | (−2.13) | (−2.07) | |
EPSP | 0.15913* | 0.44129*** | −0.11393 |
(1.84) | (5.22) | (−1.41) | |
EPSP | 0.05052 | −0.12327*** | 0.03206 |
(1.11) | (−2.85) | (0.79) | |
Constant | 2.10905*** | −7.09816*** | −13.79395*** |
(88.61) | (−21.45) | (−21.16) | |
Controls | NO | YES | YES |
Ind FE | NO | NO | YES |
Year FE | NO | NO | YES |
Observations | 10,359 | 10,359 | 10,359 |
Adj_ | 0.003 | 0.127 | 0.526 |
Note: This table reports regression results of the innovation quality, defined as patent citations on analyst optimism bias. All variables are defined in |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
46 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
47 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
48 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
49 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
50 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
51 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
52 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
53 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
54 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
55 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
56 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
57 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
58 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
59 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
60 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
61 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
62 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
63 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
64 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
65 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
66 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
67 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
68 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
69 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
70 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
71 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
72 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
73 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
74 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
75 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
76 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
77 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
78 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
79 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
80 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
81 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
82 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
83 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
84 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
85 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
86 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
87 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
88 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
89 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
90 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
91 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
92 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
93 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
94 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
95 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
96 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
97 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |