
Improved Integrated Deep Model for Pap-Smear Cell Analysis
Somasundaram DEVARAJ, Nirmala MADIAN, Gnanasaravanan SUBRAMANIAM, Rithaniya CHELLAMUTHU, Muralitharan KRISHANAN
Journal of Systems Science and Information ›› 2024, Vol. 12 ›› Issue (1) : 113-124.
Improved Integrated Deep Model for Pap-Smear Cell Analysis
Cervical cancer is the fourth most common malignancy to strike a woman globally. If discovered early enough, it can be effectively treated. Although there is a chance of error owing to human error, the Pap smear is a good tool for first screening for cervical cancer. It also takes a lot of time and effort to complete. The aim of this study was to reduce the possibility of error by automating the process of classifying cervical cancer using Pap smear images. For the purpose of this study, dual convolution neural networks with LSTM were employed to classify images due to deep learning approaches inspire distinct features and powerful classifiers for many computer vision applications. The proposed deep learning model based on convolution neural networks (CNN) with the long short-term memory (LSTM) network is to learn features which give better recognition accuracy. The overall model is known as Smear-net. In which 'smear' indicates 'pap-smear cancer cells' and 'net' refers to neural network. The parameters such as, Accuracy, Precision, Recall, Accuracy, Sensitivity, and Specificity are used to validate the models. The proposed method provides the improved accuracy of 99.57 percentage for classification of the pap-smear cells. The proposed approaches demonstrate the effectiveness of our contributions by testing and comparing with the state-of-the-art techniques.
pap-smear / deep learning / convolution neural network / smear-net {{custom_keyword}} /
Table 1 Smearnet Architecture |
Layer | Filter | Stride | Size |
Input | – | – | |
Conv 1 | 32 | 1 | |
Maxpooling 1 | – | 2 | |
Conv 2 | 32 | 1 | |
Maxpooling 2 | – | 2 | |
Conv 3 | 64 | 1 | |
Maxpooling 3 | – | 2 | |
Conv 4 | 128 | 1 | |
Maxpooling 4 | – | 2 | |
Conv 5 | 256 | 1 | |
Maxpooling 5 | – | 2 | |
FC1 | 512 | – | – |
FC2 | 7 | – | – |
Table 2 DTU/Herlev Pap smear Database |
class | category | cell Type | Number of sample |
1 | Normal | Superficial squamous epithelial | 74 |
2 | Normal | Intermediate squamous epithelial | 70 |
3 | Normal | Columnar squamous epithelial | 98 |
4 | Abnormal | Mild squamous non-keratinizing dysplasia | 182 |
5 | Abnormal | Moderate squamous | 146 |
6 | Abnormal | Severe squamous | 197 |
7 | Abnormal | Squamous cell carcinoma | 150 |
Table 3 Confusion Matrix |
Superficial squamous epithelial | Intermediate squamous epithelial | Columnar squamous epithelial | Mild squamous non-keratinizing dysplasia | Moderate squamous | Severe squamous | Squamous cell carcinoma | |
Superficial squamous epithelial | 98.64 | 2.78 | 1.58 | 0 | 0 | 0 | 0 |
Intermediate squamous epithelial | 2.58 | 96.87 | 1.55 | 0 | 0 | 0 | 0 |
Columnar squamous epithelial | 5.05 | 2.04 | 93.48 | 0.49 | 3.94 | 0 | 0 |
Mild squamous non-keratinizing dysplasia | 0 | 0 | 0 | 95.05 | 0 | 4.95 | 0 |
Moderate squamous | 0 | 0 | 2.47 | 0 | 92.25 | 0 | 6.28 |
Severe squamous | 0 | 0 | 0.68 | 3.48 | 0 | 92.52 | 1.32 |
Squamous cell carcinoma | 2.98 | 0 | 0 | 0 | 1.75 | 0 | 97.27 |
Table 4 Performance comparison of the proposed method |
Classifiers | Accuracy (%) | Error (%) | |||
Normal smear cells | Abnormal smear cells | Normal | Abnormal | ||
Principal component analysis (PCA) | 87 | 81 | 13 | 19 | |
Discrete Wavelet Transform Kernel Principal component analysis (DWT-KPCA) | 90 | 85 | 10 | 15 | |
Support vector machine (SVM) | 92 | 90 | 8 | 10 | |
probabilistic neural network (PNN) | 97 | 93 | 3 | 7 | |
Convolutional neural network (CNN) | 99.34 | 98.7 | 0.7 | 1.23 | |
Proposed SMEARNET | 99.57 | 99.21 | 0.41 | 0.81 |
Table 5 Overall performance measures |
Methods | Accuracy | Sensitivity | Specificity |
Semi automatic morphology approach[8] | 92.68 | 92.23 | 93.22 |
Contour property-based approach[33] | 96.8 | 92.43 | 93.63 |
B spline based method[38] | 98.65 | 94.65 | 96.71 |
Geodisc segmentation[7] | 98.85 | 96.32 | 95.23 |
Multi thresholding clustering[35] | 99.39 | 96.32 | 95.53 |
Clustering based Methods[32] | 98.96 | 97.32 | 94.32 |
Fuzzy Based Techniques[36] | 98.81 | 96.11 | 94.91 |
Histogram-based Techniques[40] | 97.12 | 94.91 | 93.67 |
Proposed method | 99.57 | 98.57 | 97.30 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
Barrasso R. Colposcopy as a screening tool for cervical cancer detection: A review. Franco M J. New Developments in Cervical Cancer Screening and Prevention. Oxford: Blackwell Science, Ltd, 1997: 400–405.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
Database: DTU/Herlev Pap Smear Database: http://labs.fme.aegean.gr/decision/downloads, 11.02.2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
Chen B, Mete N, Kockara S. Parameter free multilevel fuzzy c mean clustering for unsupervised detection in histological images. Society for Design and Process Science, USA, Systems Conference, 2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |